قوانين الثبات للتفاعلات النووية
في أي تفاعل نووي يكون المقدار الكلي للطاقة ثابتاً. فأي نقص في الكتلة يتبعه انبعاث كمية مكافئة من الطاقة، وأي زيادة في الكتلة يتبعها امتصاص كمية مكافئة من الطاقة وذلك طبقاً لمعادلة آينشتين ط= ك× ع 2 ـ قانون بقاء كم الحركة:
في أي تفاعل نووي يظل كم الحركة ثابتاً.
بمعنى أن كتلة المواد الداخلة في التفاعل × سرعتها = كتلة المواد الناتجة من التفاعل × سرعتها.
3 ـ قانون بقاء الشحنة:
في أي تفاعل نووي يظل عدد الشحنات ثابتاً.
بمعنى أن مجموع الأرقام الذرية للنوى الداخلة في التفاعل = مجموع الأرقام الذرية للنوى الناتجة من التفاعل.
4 ـ قانون بقاء عدد النويات:
في أي تفاعل نووي يظل عدد النويات ثابتاً.
بمعنى أن مجموع أرقام الكتلة للنوى الداخلة في التفاعل = مجموع أرقام الكتلة للنوى الناتجة من التفاعل.
قوانين كبلر
Kepler Laws
يقول نيوتن: إن أعماله وإنجازاته قامت على أكتاف علماء آخرين مثل: تيخو براهي (Thycho Brahe) ويوهانز كبلر (Johannes Kepler) وكانت هذه الأعمال هي الأساس في تحليل نيوتن لحركة الكواكب. وقد وجد تيخو وكبلر أن أعمالها متممة لبعضها بعضاً؛ إذ وجد كبلر أنه بحاجة ماسة لمعطيات تيخو الدقيقة؛ وبالمقابل وجد يتخو أن تحليلات كبلر الرياضية أساسية لعمله، فاستمرت هذه العلاقة بين العالميْن حتى وفاة تيخو. وقام كبلر باستخدام أوراق تيخو وبحوثه التي حصل عليها من مجلس الوصاية. وبسبب ذلك توصل إلى أن مدارات الكواكب حول الشمس لا تكون دائرية بل إهليجليّة (قطوع ناقصة). وتمكن من وضع ثلاثة قوانين للحركة الكوكبية.
لقد توصل كبلر إلى أن الكواكب تدور حول الشمس في مدارات إهلجيلجيَّة، والشمس في إحدى بؤرتي القطع الناقص. وهذا هو القانون الأول لكبلر.
كذلك لاحظ كبلر أن سرعة الكوكب تكون كبيرة كلما كان الكوكب قريباً من الشمس، وتكون صغيرة كلما كان الكوكب بعيداً عن الشمس.
لاستمرار كبلر في بحوثه المتعلقة بحركة الكواكب، توصل بعد مرور عشر سنوات تقريباً إلى أن مربع الزمن الدوري للكوكب يتناسب طردياً مع مكعب متوسط بعده عن الشمس. وهذا هو القانون الثالث لكبلر.
قوانين نيوتن في الحركة
تتحرك الأجسام من حولنا بأنماط حركية مختلفة، فأنت تشاهد سيارة تبدأ حركتها من السكون، وتشاهدها عندما تدور في منعطف أو تتوقف؛ كما أنك تشاهد جسماً مقذوفاً إلى الأعلى فكيف يتحرك في أثناء صعوده وسقوطه؟ وطائرة تطير في الهواء، أو سمكة تسبح في الماء؛ فكيف تتحرك هذه الأجسام؟ وما الذي يحركها؟ هل تتحرك من تلقاء نفسها أم هنالك مؤثرات خارجية تجعلها تتحرك؟ وما العلاقة بين هذه القوى المؤثرة وطبيعة الحركة الناتجة؟ وما القوانين التي تضبط حركة هذه الأجسام؟ هذه الأسئلة وأخرى كثيرة يمكنك الإجابة عنها بعد دراسة قوانين نيوتن في الحركة، هذا مع الانتساب للأهمية الكبرى والدور المهم الذي تمثله بالنسبة لعلم الميكانيكا، واتساع تطبيقها.
قانون نيوتن الأول في الحركة (قانون القصور)
إن الأجسام الساكنة تبقى كذلك ما لم تؤثر فيها قوة خارجية. وهذا ينطبق على الأجسام المتحركة، لأنه إذا كانت الأجسام الساكنة قاصرة عن تغيير حالة سكونها بنفسها، فإن الأجسام المتحركة قاصرة عن تغيير حالتها الحركية بنفسها أيضاً.
إن هذه الصفة في الأجسام التي تجعلها غير قادرة على تغيير حالتها الحركية، هي خاصية طبيعية تسمى خاصية القصور (Inertia). وقد أطلق هذا الأسم أصلاً (غاليلو)؛ ثم أصبح مرادفاً لقانون نيوتن الأول. والقصور لغة تعني العجز؛ أما فيزيائياً فيعني عدم قدرة الجسم على تغيير حالته الحركية مقداراً أو اتجاهاً أو كليهما.
إن الأهمية الكبرى لقانون نيوتن الأول في الحركة تكمن في استخدامه لتعريف القوة. فإذا انعدمت القوة المؤثرة في جسم ما فإن ذلك يؤدي إلى ثبات الحالة الحركية، في حين أن وجود القوة يؤدي إلى تغيير الحالة الحركية. وعلى ذلك فالقوة كل مؤثر خارجي يغيّر أو يحاول التغيير من حالة الجسم الحركية مقداراً أو اتجاهاً، أو كليهما معاً.
قانون نيوتن الثاني في الحركة
إذا أثرت قوة محصلة في جسم أكسبته تسارعاً، يتناسب مقداره تناسباً طردياً مع مقدار القوة المحصلة، ويكون اتجاهه في اتجاه القوة المحصلة نفسها وَيمكن تمثيل هذا القانون رياضياً باستخدام العلاقة التالية:
ق م = ك ت.
حيث
ق م = محصلة القوة المؤثرة في جسم
ك = كتلة الجسم
ت = التسارع الذي هو معدل التغير في السرعة بالنسبة إلى الزمن.
ويكون التسارعُ موجباً (بالنسبة لاتجاه حركة الجسم)، إذا كانت القوة المحصلة باتجاه الحركة فيؤدي إلى زيادة سرعته؛ ويكون سالباً إذا كان اتجاه القوة المحصلة بعكس اتجاه حركة الجسم، تتناقص سرعة الجسم إلى أن يتوقف في النهاية. أي أنه إذا كانت إشارة (ت) مثل إشارة (ع) فالتسارع موجب. وإلا يكون سالباً.
وَإذا كانت القوة المحصلة صفراً، فإن التسارع الذي يكتسبه الجسم = صفراً، وهذا هو قانون نيوتن الأول. وعلى ذلك فإن القانون نيوتن الأول يمكن اعتباره حالة خاصة من قانون نيوتن الثاني؛ أو أن القانونين يمكن اعتبارهما قانوناً واحداً هو قانون نيوتن في الحركة.
ومن قانون نيوتن الثاني يمكن أن نجد طريقة مناسبة لقياس محصلة القوى المؤثرة في جسم معروف الكتلة بحساب تسارعه.
تقاس القوة بوحدة النيوتن، عندما تقاس الكتلة بوحدة (كغ)، والتسارع بوحدة (م/ث2). ويعرف النيوتن بأنه القوة التي إذا أثرت في جسم كتلته (1) كغ، أكسبته تسارعاً باتجاهها مقداره (1) م/ث2.
قانون نيوتن الثالث في الحركة
إن التأثير بقوة في جسم يتطلب تفاعلاً (أي تأثيراً متبادلاً) بين هذا الجسم وجسم آخر. فإذا دفعت جسماً حدث تفاعل بين يدك وذلك الجسم؛ وإذا تعلقت بحبل فهنالك تفاعل بينك وبين الحبل ينشأ عنه قوة تؤثر فيك، وقوة أخرى تؤثر في الحبل.
لكل فعل رد فعل، مساوٍ له في المقدار ومعاكس له في الاتجاه.
إن قوى الجذب المتبادلة سواء بين الأجرام السماوية، أو الجسيمات الأولية هي أيضاً تطبيق لقانون نيوتن الثالث؛ والشمس تجذب الأرض بقوة تجبرها على الدوران حولها، وكذلك النواة تجذب الالكترون وهكذا.
ما وَرَاء الذَّرة
احدى الخصائص التي يتميز بها العلم هي السعي لتفسير مجموعة من الظاهرات المختلفة انطلاقاً من عدد قليل من المفاهيم الاساسية. نظرية جون دالتون (1766 ـ 1844) الذرية هي مثل بارز على ذلك، إذ انها تعتبر أن مواد مختلفة عدة هي مكوّنة جميعها من بعض أنواع الذرة، وان الذرات هي مواد البناء الاساسية لكل ما هو مادي في العالم. في أواخر القرن التاسع عشر واوائل القرن العشرين، تضافرت الدلائل على أن للذرات نفسها بنية داخلية. وبحلول عام 1932، كان العلماء قد تحققوا من أن الذرات هي تجمّعات لجسيمات أصغر منها: البروتونات والنيوترونات (التي تؤلف معا نواة صغيرة مشحونة ايجابا) مع إلكترونات تدور حولها وهي ذات شحنة سالبة.
التفاعلات بين الجسيمات
لا يكفي، لاعطاء وصف كامل للمادة، تعيين مقوّماتها، بل من الضروري أيضاً وصف الطريقة التي تتماسك بها هذه المقوّمات، أي لا بد من وصف الطريقة التي بها تتفاعل هذه فيما بينها. يمكن تمييز أربعة أنواع من التفاعلات: اثنان منها معروفان تماماً، إذ يظهران بسهولة في العناصر المادية العادية. فهناك التفاعل التجاذبي (6) الذي يُحدِث بين الأجسام تجاذباً يتوقف على كتلها، لكن تأثيره ضئيل جداً في تركيب بنية الذرّة ولا يقوم بأي دور في ترابط اجزائها، لكنه مسؤول عن القوّة التي تتجاذب الاجرام السماوية؛ اما التفاعل الكهرطيسي (7) بين الجسيمات المشحونة كهربائياً، فقوته تفوق بملايين الاضعاف التفاعل التجاذبي، وهي مسؤولة عن التجاذب بين نواة الذرة والكتروناتها المدارية. فضلاً عن ذلك، ثمّة تفاعلات مختلفة تماماً تحدث داخل النواة نفسها. هنا تتماسك البروتونات والنيوترونات بشدة رغم التنافر الكهرطيسي بينها. هذا «التفاعل الشديد» لا علاقة له بالشحنة ولا يتأثر بها، لأنه يعمل بين النيوترونات، كما يعمل بين البروتونات، وهو أقوى من التفاعل الكهرطيسي بحوالي 7000 ضعف.
النوع الرابع، المعروف «بالتفاعل الضعيف»، تساوي قوّته حوالي جزء من ألف من قوة التفاعل الكهرطيسي. وهو يظهر في بعض العمليات التي تحدث فيها تحولات لبعض الجسيمات كما في انحلال بيتا الاشعاعي.
مجالات القوة
تحدث الأنواع الأربعة من التفاعلات في الفضاء الحر. تستعمل احدى النظريات لشرح هذا «التأثير من بعيد»، فكرة مجال القوة، القائلة أن الجسيم المشحون يؤثر في الفضاء المحيط به، بحيث إذا وضع جسيم مشحون آخر في هذا الفضاء عينه، فانه يتأثر بدوره بذلك التأثير. تسمّى منطقة التأثير هذه مجالاً كهرطيسياً.
هنالك نموذج تفسير مختلف يعتمد على الميكانيكا الكمية مستعيناً بفكرة تبادل جسيمات مفترضة. فكما يتفاعل جسيمان مشحونان ببثّ الفوتونات (جسيمات الضوء) وامتصاصها، كذلك يفسَّر التفاعل التجاذبي بتبادل جسيمات مفترضة تسمّى غرافيتونات. في عام 1935 رأى هيديكي يوكاوا ( أن التفاعلات القوية، التي تبقي النواة متماسكة، متأتّية عن تبادل جسيم وكتلة يتمّ بين الالكترون والبروتون. هذا الجسيم معروف الآن باسم باي ميزون (أو بيون) . جسيمات اساسية أخرى
حتى عام 1932، كان يظن انه يمكن، بثلاثة جسيمات فقط، تفسير البنية الذرية. لكن منذ ذلك الحين، تعقدت الأمور باكتشاف جسيمات عديدة اضافية بفضل دراسة الأشعة الكونية وتجارب استخدمت فيها مسارعات الجسيمات (1، 9) . فقد تبين أن الاصطدامات المرتفعة الطاقة تؤدي إلى توليد جسيمات جديدة عرف منها حتى الآن ما يربو على 200، وأكثرها غير مستقرة (2) .
تصنف هذه الجسيمات تحت الذريّة العديدة في مجموعات: فالجسيمات التي تشترك في التفاعلات الشديدة تسمى هادرونات (ومنها النيوترون والبروتون والهيبرون والميزون)، والجسيمات التي لا تشترك في التفاعلات الشديدة تسمّى لبتونات (ومنها الالكترون والنيوترينو) . لا تزال المشكلة التوصل إلى نظريّة موحّدة تفسر وجود هذه الكثرة من الجسيمات وتصرفاتها.
مجموعات الجسيمات
وزع علماء الفيزياء الجسيمات تحت الذرية إلى ثلاث مجموعات أساسية هي:
وهذه المجموعات الثلاثة هي الجسيمات الأولية, بمعنى أنها لاتبدو مكونة من وحدات أصغر, وأحجامها أدق بكثير من أن يتم قياسها حالياً. فالجسيمات الأولية أدق بمقدار 100 مليون مرة من الذرة.
اللبتونات
اكتشف علماء الفيزياء ستة أنواع من اللبتونات, وهي الإلكترونات, والميونات, والتاوات, إضافة إلى ثلاثة أنواع من اليوترينوات التي ليس لها شحنة كهربائية. أما بقية اللبتونات فلها شحنة سالبة.
الكواركات
لا تشبه الكواركات اللبتونات؛ فهي لا توجد بمفردها في الطبيعة, إنما تتحد دائماً لتكون الجسيمات المعروفة باسم الهدرونات. والهدرونات الثابتة الوحيدة هي البترونات والنيوترونات التي تتكون من مجموعات متحدة من نوعين من الكواركات هي الكواركات الفوقية والكواركات التحتية. وتحمل كل واحدة من هذه الكواركات شحنة كهربائية تساوي ثلث أو ثلثي شحنة الإلكترون. وقد تعرف علماء الفيزياء أيضاً على كواركات غير ثابتة؛ منها الجسيمات الغربية, والمسحورة, والقاعدية, وقد تتحد الكواركات لتكون مايربو على 300 نوع من الهدرونات.
البوزونات
تقوم البوزونات بنقل القوى بين الجسيمات. وتشمل الأنواع المعروفة من البوزونات الفوتونات, والقلونات, والويكونات, أو البوزونات الضعيفة. وتحمل الفوتونات - التي هي في الأصل جسيمات من الضوء - القوة الكهربائية التي تحفظ الإلكترونات داخل الذرة. ويمكن للويكونات أن تغير أي نوع من الكواركات أو اللبتونات إلى نوع آخر.
مصادر الإشعاعات التي تتعرض لها الكائنات الحية والإنسان
ـ العناصر المشعة الموجودة في التربة والصخور.
2 ـ الأشعة الكونية.
3 ـ المفاعلات الذرية ومعجلات القذائف.
4 ـ الغبار الذري الناتج من تفجير القنابل الذرية والهيدروجينية.
5 ـ أجهزة الأشعة السينية المستخدمة في العلاج والكشف.
6 ـ الأجهزة المحتوية على مواد مضيئة دذاتياً مثل الساعات.
7 ـ الكبرون المشع ك، وهو موجود في جميع أجسام الكائنات الحية مع الكربون العادي ك بنسبة 1: 25000 وهو يشع بيتا السالبة.
مقارنة بين التفاعلات الكيميائية والتفاعلات النووية
التفاعلات الكيميائية | التفاعلات النووية |
تتبع قانون بقاء الماد | ةتتبع قانون بقاء الطاقة |
تتبع قوانين النسب الثابتة والمتضاعفة | لا تتبع هذه القوانين |
ينتج عنها طاقة صغيرة | ينتج عنها طاقة هائلة |
تتم بانتقال أو مشاركة الإلكترونات بين أغلفة التكافؤ أو بالمساهمة بينها | تتم بين النوى وينتج عنها تكوين نوى عناصر جديدة |
تحتاج غالباً لحرارة بسيطة لكي يبدأ التفاعل حتى تتقارب مستويات الطاقة من بعضها فيحدث انتقال الإلكترونات أو المساهمة بينها | يحتاج بعضها لمعجلات القذائف. والتفاعلات الاندماجية تحتاج إلى ملايين الدرجات المئوية ومليارات الضغوط الجوية |
نظائر العنصر الواحد تعطي نفس النواتج في التفاعلات الكيميائية | نظائر العنصر الواحد لا تعطي نفس النواتج في التفاعلات النووية |
يد+ أ ـ يد 2 أ ماء عادي | لث + يد ـ هـ + هـ + طاقة |
2 يد + أ ـ يد 2 أ ماء ثقيل | لث + يد ـ هـ + هـ + ق + طاقة |
لا تتغير نوعية العنصر | تتغير نوعية العنصر |
مقارنة بين السيكلوترون والبيتاترون من حيث
أ ـ نوع الجسيمات المعجلة ـ ب ـ الاستخدام ـ ج ـ فكرة التعجيل ـ د ـ المجال المغناطيسي ـ هـ ـ السرعة الزاوية ـ و ـ المسار.
السيكلوترون | البيتاترون |
أ ـ يستخدم في تعجيل الجسيمات الموجبة الشحنة مثل البروتونات، الديوترونات ودقائق ألفا | أ ـ يستخدم في تعجيل الإلكترونات |
ب ـ تستخدم الجسيمات الموجبة المعجلة كقذائف في التفاعلات النووية | ب ـ توجه الإلكترونات المعجلة نحو سلك من البلاتين فتصطدم به فتولد أشعة سينية ذات طاقة عالية تستخدم في التفاعلات النووية |
ج ـ تعتمد فكرة التعجيل على تغير اتجاه المجال الكهربي في الفجوة بين (د 1، د 2) . فعندما يعبر الجسيم الفجوة يتم تعجيله فتزداد سرعته. وبتكرار تغير اتجاه المجال يكتسب الجسيم طاقة إضافية كلما عبر الفجوة، حتى تصل طاقته إلى أقصاها في نهاية مساره، ثم يوجه نحو الهدف لإحداث التفاعل النووي | ج ـ تعتمد فكرة التعجيل على تغير شدة المجال المغناطيسي المتردد. حيث تزداد شدته تدريجياً من صفر إلى نهاية عظمى في الربع الأول من ذبذبة التيار أي في زمن قدره 1/240 من الثانية، وفي هذه الفترة تكتسب الإلكترونات سرعة وطاقة متزايدة تصل إلى أقصاها في نهاية هذه الفترة الزمنية. وعندما توجه نحو سلك البلاتين لتصطدم به فتتولد الأشعة السينية ذات طاقة عالية |
د ـ المجال المغناطيسي المستخدم يكون موحد الاتجاه والشدة | د ـ المجال المغناطيسي متردد متغير الشدة والاتجاه |
هـ ـ السرعة الزاوية للجسيمات المعجلة ثابتة لا تعتمد على (ع أو س) | هـ ـ السرعة الزاوية للإلكترونات المعجلة متزايدة تتناسب طردياً مع السرعة الخطية (ع) |
و ـ تتحرك الجسيمات المعجلة في مسار حلزوني | و ـ تتحرك الإلكترونات المعجلة في مسار دائري |
وجه المقارنة القنبلة الذرية القنبلة الهيدروجينية
فكرة العمل | تعتمد على إحداث تفاعل انشطاري في وقت قصير | تعتمد على إحداث تفاعل اندماجي بين نظائر الهيدروجين باستخدام تفاعل انشطاري متسلسل |
نوع التفاعل النووي | تفاعل انشطاري متسلسل | تفاعل اندماجي |
القنبلة الذرية | القنبلة الهيدروجينية | |
وقودها اليورانيوم 235 أو البلوتونيوم | وقودها نظائر الهيدروجين وقد يضاف إليها نظير الليثيوم لث وتحاط نظائر الهيدروجين والقنبلة الذرية بغلاف من اليورانيوم 238 | |
وقودها محدد بحجم حرج | وقودها غير محدد بحجم معين | |
تستخدم فيها مواد عاكسة للنيوترونات | لا تستخدم فيها مواد عاكسة للنيوترونات | |
قوتها التدميرية أقل 1000 مرة من القنبلة الهيدروجينية | قوتها التدميرية أكبر 1000 مرة من قوة القنبلة الذرية | |
ميكانيكا الكم
ميدانٌ من ميادين علم الفيزياء، يصف تركيب الذرّة وحركة الجسيمات الذرية، ويوضح كذلك كيف تمتص الذرات الطاقة في شكل ضوء، وكيف تطلقها، ويوضح طبيعة الضوء.
تمضي ميكانيكا الكم إلى ما يتجاوز الحدود القصوى للفيزياء التقليدية، التي تقوم على أساس القوانين التي صاغها العالم الإنجليزي السير إسحق نيوتن. وهي تُعد من المُنجَزَات العلمية الكبرى التي تحققت في القرن العشرين. وبالإضافة إلى أهميتها النظرية، فقد ساهمت في تطوير أجهزة عملية مثل أجهزة الليزر والترانزستور، كما مكنت العلماء من تحقيق فهم أفضل للروابط والتفاعلات الكيميائية.
فهم ميكانيكا الكم: تتحرك في الذرة جسيماتٌ صغيرةٌ ذاتُ شحنة كهربائية سالبة. ويُطلق على هذه الجسيمات الإلكترونات وتتحرك في مدارات حول نواة ذات شحنة موجبة. وتوضح ميكانيكا الكم أن الإلكترونات لا يمكنها التحرك إلا في مدارات بعينها، وكلّ مدار يدعى المدر المُكمَّى وله قيمة معينة من الطاقة. وعندما يكون إلكترون ما في مدار محدد فإنه يوجد في مستوى بعينه من مستويات الطاقة، ولا يطلق الطاقة أو يمتصها. ويظل الإلكترون في هذه الحالة العادية، طالما أن ذرته على حالها، ولكن إذا ما أثرت قوى جارجية على هذه الذرة، فإن الإلكترون يمكن أن يتغير متنقلاً إلى مدار مكمّى آخر.
وعندما يقفز الإلكترون من مدار ذي طاقة أعلى إلى مدار ذي طاقة أقل، فإنه يطلق الطاقة على شكل ضوء، وهذا الضوء يُطلق في[size=11]صورة حزمة صغيرة من الطاقة تدعى كوانتم أو فوتون. وتساوي طاقة الفوتون هذه الفرق في الطاقة بين المدارين اللذين حدث القفز من أحدهما إلى الآخر. والإلكترون يمكنه كذلك أن يمتص فوتوناً، ويقفز من مدار ذي طاقة أدنى إلى مدار ذي طاقة أعلى. وبهذه الطريقة فإن ميكانيكا الكم توضح العملية التي من خلالها تُطلق الذرة فوتونات الضوء وتمتصها.
كان العلماء في السابق يعتقدون أن الضوء موجةٌ تنبعث على شكل دفق متواصل، ولكننا الآن نعرف أن للضوء خواصّ كل من الجسيمات (الفوتونات) والموجات. وللفوتون طاقة تتناسب مع تردد الموجات؛ أي مع عدد الذبذبات في الثانية.
وتوضح ميكانيكا الكم إن الإلكترونات وغيرها من الجسيمات الذرية للمادة مرتبطة بالموجات كذلك. وهذه الموجات التي تسمى موجات المادة لها أطوال موجبة محددة. والطول الموجي يتناسب في كل الأحوال مع تردد الموجات ومع كمية حركة الجسيمات. وهذه الكمية تُحسب بضرب كتلة الجسيمات في سرعتها. وتقدم موجات المادة تفسيراً لترتيب الإلكترونات في مدارات منفصلة.[/size]
نظرية بوهر للتفاعل النووي
تفسر هذه النظرية مراحل التفاعل النووي وتتلخص فيما يأتي:
1 ـ عند قذف نواة الهدف بقذيفة فإنها تمتص القذيفة ويتكون نواة مركبة نواة الهدف + قذيفة ـ نواة مركبة 2 ـ تتوزع طاقة القذيفة على نويات النواة بالتساوي فترتفع درجة حرارتها إلى ملايين الدرجات المئوية فتتصادم النويات وفي النهاية يتركز جزء كبير من الطاقة الإضافية على إحدى النويات فتتغلب على القوى النووية وتنفصل عن النواة.
نواة مركبة ـ نواة نهائية + قذيفة أو قذائف مطرودة 3 ـ النواة المركبة تشبه قطرة سائل ارتفعت درجة حرارتها فتبخر بعض جزيئاتها. فالنواة المركبة يتبخر بعض نوياتها والنوية المتبخرة قد تكون بروتوناً أو نيوتروناً أو بروتوناً مع نيوترون (ديترون) أو 2 بروتون مع 2 نيوترون (دقيقة ألفا) .
4 ـ إذا كانت القذيفة طاقتها ضعيفة وغير قادرة على تبخير إحدى النويات تأسرها النواة وتصبح نواة نهائية وتخرج منها طاقة القذيفة على هيئة فوتونات جاما.
علاقات بين الوحدات